DDC Document No. bt * b 06349 2-T

THE UNIVERSITY qfr MICHIGAN

ﬁ ANALYSIS OF CROSSED-FIELD SPACE-CHARGE FLOWS
T
(A
O TECHNICAL REPORT NO. 74
© - . 5K
| ELECTRON PHYSICS LABORATORY /
; ' Department of Electrical Engineering b
|
e N
By: N. A. Masnari Approved by: J. E. Rowe
July, 1964
cou’tucr vmm .

iﬂé'rldmc ncunou.ocv DMSION OF THE AIR FORCE AVIONICS LABORATORY,
; g;sincn AND. TECHNOLOGY BiVISION, AR FORCE SYSTEMS COMMAND
vmcm.gnnasou AIR icnte BASE, OHIO. CONTRACT NO. AF33(615)-1553.

0FFIC E OF RtSEAR‘"H ADMINISTRATION - ANN ARBOR




v 3
'
a | ‘
T
. ’
-
= . 2 -

Now

-

A 3 &b
4 * A
TR i TR R 3 . : ) .
S TN m.»wm ' el i :
: ikt L AN A T

+ % B
L “ ~ 0 ant
2 - L L B fe¢ ..
< B kL 1 1 g, o

4 mtieﬂng:gatgrs nay oSta;.n'gopieB‘ of this

?
e
A .
Y
.
' g
v 1

repprt

'/"-\ ""',l i :,rr"‘ ,'»' A rig ' SEL Rped M X, . R - ‘
j : ) A from ‘WMMQ‘Mmmtion Center, Cameron Station,
) LN ¥ At N LSO & Fa -\ '. . ) .

.
v
N
+
W
i
‘-
=4 »
~h
.
e
.

o



THE UNIVERSITY OF MiCHIGAN
ANN ARBOR, MICHIGAN

ANALYSIS OF CROSSED-FIELD SPACE-CHARGE FLOWS

TECHNICAL REPORT NO. T&

Electron Physics Laboratory
Department of Electrical Engineering

By

Nino A. Masnari

Approved by: %g' E fM d
J L[]

Rowe, Director
Electron Physics Laboratory

Project 06349

CONTRACT NO. AF-33(615)-1553
ELECTRONIC TECHNOLOGY DIVISION
AIR FORCE AVIONICS LABORATORY

RESEARCH AND TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

July, 1964



This report has also been submitted as a
dissertation in partial fulfillment of the
requirements for the degree of Doctor of
Pha.osophy in The University of Michigan,
1964,



ABSTRACT

The purpose of this dissertation is to investigate the character-
istics of space-charge flows in crossed d-c electric and magnetic fields.
The investigations include theoretical considerations of rectilinear
laminar space-charge flow, analog and digital computer analyses of
electron injection systems and experimental studies of beam character-
istics. 1In genercl the results provide a better understanding of the
operation of injected-beam crossed-field devices.

The performance of a crossed-field device is optimum when the
electron beam satisfies the conditions of rectilinear Brillouin flow.
For any given circuit voltage, beam current and magnetic field there is
a unique beam which satisfies the Brillouin conditions. This leads to a
theoretical limitation in the perveance and electronic efficiency. The
analysis of various theoretical electron gun systems indicates that the
beam characteristics invariably differ fram the ideal conditions.

Digital and analog camputer techniques have been used to deter-
mine thc space-charge flow produced by various electron injection
systems. The studies indicate that the electron beam characteristics
for various Kino gun configurations differ noticeably from the theoret-
ical results. In particular, the emission from the cathode is nonuniform
and the beam nonlaminar. How=2ver, with appropriate electrode
modifications it is possible to improve both the uniformity of the
emission and the beam laminarity.

The digital camputer analysis of initial velocity effects
indicates that variations in the normal emission velocity camponent
produce essentially no change in the electron motion. However, any
change in the initial tangential velocity results in significantly
different electron trajectories.

The nonlaminar injection cf electron streams into the anode-sole
region was investigated by means of the digital computer. The general
results indicate that crossed-field space-charge flows are extremely
sensitive to transverse forces. Consequently beams which are improperly
injected are observed to undulate, vary in thickness and become
increasingly nonlaminar.

The experimental investigations were undertaken in an attempt to
evaluate both the gross and microscopic characteristics of the
space-charge flow. The experiments involved the use of an interception
system to probe the beam at various cross-sections in the anode-sole
region. Generally the beam experienced variations in thickness and
undulated with approximately the cyclotron period. The space-charge
densities at various points in the beam were found to be between 0.5
and 1.5 times the Brillouin value. The results also indicate that the
space-charge flow in crossed-field devices is generally nonlaminar with
appreciable intersecting of electron trajectories.
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CHAPTER I. INTRODUCTION

l.1 Preliminary Remarks

The general class of electron tubes cammonly referred to as
crossed-field devices involves the motion of electrons through orthogonal
electric and magnetic fields. These devices are ideally suited for
many microwave applications. Figure 1.1 illustrates three crossed-
field electrode configurations which have been investigated and used in
the past. Figure l.la shows a cylindrical magnetron in which electrons
are emitted from the entire cathode. Figuwre 1l.1b is essentially a
linear version of the cylindrical device since it also involves the
emission of electrons from the entire low potential electrode. It
differs in the sense that the beam is not re-entrant as in the cylindrical
magnetron. Figure l.1lc, however, involves the formation of a well
defined beam from a relatively narrow cathode and, thus, is signifi-
cantly different from the preceding devices. The first two classes
involve the saturation of the cathode-anode space with a large number
of electrons whereas the third device requires the injection of a strip
type electron beam into a parallel plane anode-sole region. The electrode
beneath tae beam is referred to as the sole and that above the beam as
tne anode. It is the injected-beam family of devices which f-iis the
basis of this dissertation.

One of the primary requirements for the successful operation of
an injected-beam crossed-field device is tne establishment of a well

defined laminar electron beam in the anode-sole region. The great

importance of the space-charge flow characteristics can be demonstrated

by considering the fundamental objective of the device. Figure 1.2



EMITTING SOLE ﬂ
(b) CROSSED -FIELD EMITTING SOLE DEVICE

(c) CROSSED--FIELD INJECTED-BEAM DEVICE

FIG 1.1 EXAMPLES OF VARIOQUS CROSSED-FIEID ELECTRON

DEVICE CONFIGURATIONS.
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illustrates a typical tube including the slow-wave structure which is
located adjacent to the anode. The structure is designed so that the
applied r-f signal propagates in the z-direction with a velocity approxi-
mately equal to the velocity of the electrons in the beam. Under these
conditions the electrons remain in phase with the r-f signal and are
able to exchange energy continuously with the wave. As the electrons
lose energy to the wave they maintain the same z-component of velocity
but move closer to the structure and hence to higher potentials. Thus,
the enerygy conversion mechanism is the transference of potential energy
from the beam to the r-f signal with little change in the electron ..
kinetic energy. Since favorable electrons stay in phase with the wave
until they strike the slow-wave structure, the efficiency of such devices
should be quite high.

The ideal electron beam for such a device is one in which all of
the electrons have the same velocity as the r-f wave. This velocity

must also satisfy

EO

which is the condition required for balance between the transverse
electric and magnetic fields (Eo and B respectively) acting on the
electron. However, for a uniform magnetic field it is impossible, even
in theory, to have a finite thickness univelocity beam which is capeble
of linear motion in the anode-sole region. (This assumes that the
electrons are all emitted fram a unipotential cathode.) Consequently,
there must be a velocity variation across the beam. Those electrons
whose velocities are less than the r-f wave phase velocity abstract

energy from the wave and are detrimental to the interaction process.
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Fortunately these electrons continuously move away from the structure
until they are collected on the sole.

Obviously the characteristics of tne space-charge flow in the
interaction region exert a great influence on the performance of a
crossed-field device. Since the electrons at a given cross section
must have different velocities, the optimum beam is one in which the
d-c electrons exhibit rectilinear laminar flow characterized by non-
intersecting trajectories. This is referred to as a rectilinear
Brillouin beam!’? in which case the space-charge density is constant
and the electron velocity varies linearly across the beam. This
velocity variation is required to provide a balance between the trans-
verse electric and magnetic forces acting on the individual particles.
Various investigations® have indicated that the Brillouin beam provides
the optimum space-charge flow conditions for the operation of crossed-
field amplifiers and oscillators. Consequently, rectilinear laminar
electron beams have usually been the objective in the design of
crossed-field injection systems.

As indicated above, the successful operation of any crossed-field
device requires an electron injection system which is capable of producing
an acceptable beam. In O-type devices an axial magnetic field can be
applied to constrain the electrons within a reasonably small
cross-sectional area. In crossed-field devices there is no comparable
constraint and any imperfection in the beam as it enters the interaction
region will necessarily result in curvilinear motion of the electrons.

The evaluation of crossed-field injected-beam devices requires a
fundamental understanding of the formation of electron beams as well as
a thorough knowledge of their d-c behavior. Thus, it is necessary to

consider the beam characteristics in both the gun region and in the
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interaction space. Although there have been mapy investigations which
are pertinent to the formation and behavior of electron beams in crossed-
field devices, the following sections will describe only a few of the

more important studies.

1.2 Crossed-Field Electron Injection Systems

1.2.1 Theoretical Gun Designs. In recent years there have been

numerous attempts to design electron injection systems capable of forming
laminar beams. One of the earliest investigations resulted in the French
short gun or Charles gun*, illustrated in Fig. 1.3. The design is based
on the space-charge-free trajectory of an electron emitted from a |
cathode located in a parallel plane gun region. The electric field is
assumed to be uniform in the gun region so that the electron follows

a cycloidal path and reaches the exit plane at the apogee of its tra-
Jectory. The electric field in the interaction region is also considered
to be uniform and twice as great as the gun region field. Thus, the
electron should theoretically be capable of maintaining linear motion
through the anode-sole region.

Dain and Lewis® have applied Ehrenfest's principle of adiabatic
invariance to the investigation of electron motion through crossed
electric and magnetic fields. In essence the adiabatic principle states
that if a parameter which appears in the Hamiltonian of a conditionally
periodic system changes slowly and continuously, the action variables
remain invariant in the 1limit of an infinitesimally slow change. For
the particular application to the electron guns this means that the
behavior of tie beam in the interaction region can be obtained without
considering the details of the electron motion through the transition

region provided the fields in this region vary sufficiently slowly.
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Thus, by properly selecting the electric and magnetic field values in
the cathode and interaction regions it is possible to obtain a converged
beam in the sense that the beam width is less than the cathode width.
However, the flow is not that of a rectilinear laminar beam, but rather,
consists of electrons cycloiding between rectilinear boundaries.

Bartram and Pease® also applied the adiabatic principle to the
design of an electron injection system. Their device was termed a "ramp
gun” and is illustrated in Fig. 1l.4. The namenclature results from the
fact that the transition region is comprised of various overlapping ramp
electrodes biased at intermediate potentiale. The electron flow wvas
assumed to be that of the single trajectory beam (not necessarily laminar)
described by Brillouin! and Slater®. Unlike the Dain and lewis work,
the effects of space charge were included in this analysis. The ramp
electrode configurations were obtained by computing the equipotentials
outside of the beam region and placing the properly designed electrodes
along these curves.

The so-called Kino guns’ illustrated in Fig. 1.5a and 1.5b also
were developed on the assumption of a single trajectory electron beam.
The electrons are assumed to leave the cathode in the normal direction
and this component of current density (Jy) is considered to remain
constant throughout the space-charge flow. The electric field and
electron velocity have no variation in the z-direction and the field is
further restricted to have only a y-camponent. Under these conditions
the beam is caomposed of identical electron trajectories.

The appropriate electrode configurations for producing the assumed
flow are obtained by utilizing a method of complex variables derived
independently by Kirstein® and Lomax®. The method consists of trans-

forming the problem to the complex plane and solving for the complex
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potential function required to provide the prorer voltage and electric
field variation along the boundary of the beam in the complex plane.
The inverse transformation then gives the equipotentials outside of
the beam in the y-z plane. Although the operation is complicated it
can be performed on a digital computer. In Fig. 1.5 one of these
equipotentials has been selected as the focusing anode while the two
zero potential curves become the cathode ramp electrodes.

The Kino short gun is derived on the basis of space-charge-limited
operation and zero emission velocity from the catnode. One of the
difficulties of the short gun flow is the infinite space-charge density
which occurs at thec»ct = 2n point along a trajectory. Another is the
fact that the electron velocity vectors are nonparallel in any volume
element of thickness Az, thus making it impossible to inject the beam
into the anode-sole region in the desired manner.

The Kino long gun configuration is obtained if the electrons are
assumed to leave the cathode with a small initial y-component of velocity.
The theoretical velocity variation and space-charge density in the beam
are found to be closely related to the Brillouin values. The maJjor
objection to this type of flow is the severe restriction that all the
electrons leaving the cathode normal to the surface must do so with the
same value of initial velocity.

The magnetically shielded gun illustrated in Fig. 1.6 was developed
by Hoch©. The electron beam is formed within the shielded gun and then
injected into the magnetic field region. The beam leaves the shield
with essentially a uniform velocity and travels through a transition
region in which both the electric and magnetic fields vary. The electrons

are then injected into the anode-sole region. The obJjective of the gun
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FIG. 1 6 MAGNETICALLY SHIELDED INJECTED-BEAM GUN CONFIGURATION.
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is to converge the beam within the shield and taper B and Ey to maintain
the same beam thickness through the transition region. This differs from
the usual crossed-field injection systems in which the orthogonal electric
and magnetic fields are simultaneously used to converge the beam.

The difficulty with the shielded gun is the fact that the
electrons leave the shield with the same velocity but must reach the
anode-sole entrance with a linear velocity variation across the beam.
This requires the careful design of the electric and magnetic fields
in the transition region so that the upper electrons are accelerated
more than the lower ones. At the same time the electrons must be
restricted to linear motion along the z-direction with no transverse
displacement. The design of a system capable of producing such a
transition appears to be extremely difficult.

Other types of crossed-field electron injection systems have
been developed but in general they are similar to those described
above. The objective is always the same; the formation of a beam whose
characteristics are nearly identical to Brillouin flow. Except for
the shielded gun, these designs deal with electrons which are emitted
from a unipotential cathode and are then rotated by approximately 90°
before injection into the anode-sole region. Experimental investigations
of various injection systems clearly demonstrate the difficulty associ-
ated with the formation of laminar crossed-field electron beams.

l.2.2 Previous Evaluations of Injection Systems. The Charles-

type gun has been used extensively in the construction of crossed-field
devices. It 1s still employed frequently despite the fact that it cannot
be used with a wide cathode. This limitation is a direct consequence

of the manner in which the gun is designed. That is, the design is
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based on electrons leaving just one point on the cathode. Thus, those
electrons emitted from different locations aiong the cathode will enter
the anode-sole region in a nonlaminar fashion.

Dain and Lewis did not construct an adiabatic gun and, hence,
no experimental data is available. However, a beam tester model of
the adiabatic ramp gun of Bartram and Pease was operated and evaluated.
The electron beam was observed by introducing hydrogen into the system
and noting the ionization pattern due to the collisions with the
electrons. The results indicated that the device generated essentially
the predicted current, beam thickness and location.

The Kino short gun was investigated by Midford!! and found to
behave in many respects as predicted by the theory. For example, the
current and beam location were approximately as expected. However,
investigation of the beam after leaving the gun indicated that the flow
became nonlaminar. This can be attributed to the nonideal characteristics
of the beam near the wct = 2x plane. Furthermore, the emission from the
cathode appeared to be quite nonuniform. 1In particular, photographs
of the beam indicated suppressed emission from the rear of the cathode.

Despite the apparent ideal nature of the space-charge flow in
the Kino long gun, e’perimentsl? have suggested undesirable character-
istics. In particular, extreme_y high noise figures and r-f instabilities
have been observed!2. This behavior is thought to be caused by the
occurrence of diocotron interactions during the motion of the beam
through the long transition region. The existence of the diocotron
effect 18 observed by the presence of extremely large sole currents even
when the sole is at a negative potential relative to the catnode. These

results suggest that the traversal of any long transition region at low
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velocities will increase the nonlaminarity of the beam. Thus, it appears
that any tube utilizing an adiabatic transition region will result in
high noise level operation.

The shielded gun experiments of Hoch indicated 20 to 30 percent
interception of the beam within the shielded region. Four different
tubes were built and tested with the investigations in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>